
JOURNAL OF COMPUTATIONAL PHYSICS 8, 144-152 (1971) 

An Efficient Monte Carlo Event Generation Method 

for Multiperipheral Models 

JEROME H. FRIEDMAN, GERALD R. LYNCH, CLIFFORD G. RISK, 
AND THOMAS A. ZANG, JR.* 

Lawrence Radiation Laboratory, University of California, Berkeley, California 94720 

Received November 17, 1970 

A Monte Carlo event generation method is presented that integrates multiperipheral 
models with good efficiency for all energies and all multiplicities up to 18. 

The multiperipheral model [,l] has been the subject of considerable theoretical 
investigation in recent years. In order to predict experimental results from this 
model it is necessary to perform phase space integrals of the form R = se r(d) d”$, 
where q5 is a point and d’“# a volume element in the (3n - 4)-dimensional phase 
space, and z, is the total phase space volume accessible to the final state. The 
integrand p.(4) is the transition matrix element squared calculated from the model. 
Because of the complexity of these phase space integrals, Monte Carlo techniques 
are often employed for their evaluation. 

Detailed descriptions of Monte Carlo event generation are discussed elsewhere 
[2, 31 and only some of the basic concepts are discussed here. The Monte Carlo 
method consists of generating a sampe of N random events in the phase space 
volume zi according to a normalized frequencyf(& and, averaging r(#)/f($) for 
these events. Then 

where & is the phase space point corresponding to the ith random event. The 
statistical uncertainty in this evaluation is 6R = r~(r/f) N-l12, where ~(r/‘) is the 
root-mean-square deviation of r(&/f($) from its average value R. 

There are several variations of the multiperipheral model, but they all have in 
common the property that the four-momentum transfers squared from the beam 
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(or target) particle to certain final-state particle combinations are severely limited. 
This property is summarized by the transition matrix element squared: 

where the ti are the (n - I) four-momentum transfers squared that are limited 
by the model and the a, parametrize the degree of limitation. The particular ti 
that the multiperipheral model limits are most easily described by the use of the 
multiperipheral diagram of Fig. 1. The two lines on the left represent the momenta 

n-2 

n-l 

b n 

RG. 1. A multiperipheral graph for an n-particle final state (see text). 

of the two incident particles, and the lines on the right represent the momenta of 
the n final-state particles. The vertical lines linking the final-state particles represent 
the four-momentum transfer squared from incident particle a to the combination 
of particles above each link. These are the four-momentum transfers squared that 
appear in Eq. (2). Note that by momentum conservation these ti are also the four- 
momentum transfers squared from incident particle b to the particle combination 
below each link. 

For a given number of Monte Carlo events the statistical uncertainty 6 
the integration depends critically upon the phase space frequency distribution of 
the eventsf(#). The more closelyf(+) resembles r(4) the higher the accuracy for 
the same number of Monte Carlo events. The accuracy of a Monte Carlo integra- 
tion is usually characterized by its efficiency E, which is defined as R2 divided 
the average of [r(+)if(#)12. This efficiency is equal to one for the casef(4) = ~(4) 
and is smaller the more f(b) d eviates from r(4). In terms of the efficiency the 
fractional statistical uncertainty in the Monte Carlo integration is given by 

@R/R) = (l/e - 1)1/2N-1/2. (31 

The computational time required to evaluate Monte Carlo integrals grows lmeariy 
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with the number of events required. Therefore, to minimize this time, the efficiency 
should be as large as possible. 

Early Monte Carlo event generators [2,4] generated events with nearly constant 
phase space frequencies. These generators have good efficiency for integrating a 
constant matrix element squared, r(4) = 1, but they have a very low efficiency for 
integrating the multiperipheral model. This is because the model severely limits 
the ti in Eq. (2), while the generator produces events whose ti are roughly evenly 
distributed in the entire kinematic range. 

Recently there have been several methods developed that improve the efficiency 
of Monte Carlo integrations for models of high-energy collisions [3, 5-71. Noting 
that an experimental property of high-energy collisions is the limiting of the final- 
state particles’ momenta transverse to the beam direction, Pene and Krzywicki [6] 
as well as Kittel, Van Hove, and Wojcik [7] have developed an event generator 
with a phase space frequency distribution that can be approximated by 

f(4) = exp (-b &Q). 

The pi are the components of the final-state particles’ momenta transverse to the 
beam direction. This generator integrates several models of high-energy collisions 
with good efficiency. However, most multiperipheral models concentrate the 
longitudinal momentum of the final-state baryons at large values, whereas this 
generator produces them with a more or less constant phase space distribution. 
This results in low efficiency for integrating these multipheripheral models. 
Adressing themselves specifically to multipheripheral models, Byckling and 
Kajantie [5] have developed a Monte Carlo event generator that produces events 
with a phase space frequency that can be approximated at high energy by 

n-1 

f(4) = II CL~+~ exp d(4 - h+>l. 
i=l 

(5) 

Here the t, are the same as those appearing in Eq. (2). The ti+ are the maximum 
values for each corresponding ti . These maximum values vary from event to event 
and depend upon the values assigned to the integration variables generated before 
the specific ti . Each pi is the invariant mass of the final-state particle combination 
for which ti is the four-momentum transfer squared. This generator integrates the 
multiperipheral model of Eq. (2) with good efficiency as long as the energy is not 
too high or the multiplicity (numer of final-state particles, n) is not too large. 
Table Ia shows the efficiency of this generator for various multiplicities and labo- 
ratory beam momenta, for the reaction pp + pp(n - ~)sT, where the ai in both 
Eq. (2) and Eq. (5) are all taken to be 4.0. 

This report presents a Monte Carlo event generation method that integrates 
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TABLE I 

Efl’kiency of Monte Carlo integration for the matrix element squared ~(4) = exp (4 j$I: ti) 
as a function of the laboratory beam momentum, P, and final state multiplicity, 

n, in the reaction pp + pp(n - 2)~: 
(a) for the generation method of Refs. [3, 51; 
(b) for the generation method of this report. 

n 
P + 50 GeV/c 200 GeV/c 1000 GeV/c 

4 (4 0.20 0.14 0.08 

(b) 0.83 0.86 0.80 

8 (4 0.002 0.0007 0.0002 

@I 0.41 0.43 0.43 

16 (4 ~0.00005 <0.00002 <0.00002 

0) 0.06 0.07 0.09 

multiperipheral madels with good efficiency for all energies and all multiplicities 
up to 18. Table Ib shows the efficiencies achieved with this generator for the same 
conditions discussed above for Table Ia. Other multipheripheral models can be 
integrated with similar efficiencies. 

In order to understand this generation method it is necessary to understand the 
reasons why the frequency distribution of Eq. (5) loses efficiency with increasing 
energy and multiplicity. This is most easily done by first considering the special 
case in which all of the particles in the reaction have zero rest mass. For this case 
one has 

with t, = 0. Inserting this into Eq. (5) ,one has 

or (neglecting constant factors) 

The y1 - 2 invariant masses are generated first with frequency 

581/8/r-IO" 
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and then, using these invariant masses, the 12 - 1 four-momentum transfers 
squared are generated with the frequency 

72-l 

f(t) = exp(wJ n exp{bi - 4-1Q-4pi)Zl b3. 
i=2 (9) 

Generation of the invariant masses with the frequency of Eq. (8) yields 

((Pi-l/d2> = 1 - cw. (10) 

Replacing &JpJ2 by this average value in the exponent of Eq. (9) and letting 
all of the ai have the same value a, one has 

n-1 

f(d> = ew@h) jJ pi expKW) 4. 
i=2 

(11) 

By comparing this frequency distribution with the integrand, r(4), of Eq. (2) 
the reasons for its loss of efficiency with increasing multiplicity becomes apparent. 
The less dramatic loss of efficiency with increasing energy is not illustrated because 
of the approximations employed in obtaining Eq. (11). Compared with the multi- 
peripheral model of Eq. (2), the frequencyf($) of Eqs. (7) and (11) overpopulates 
large values of invariant masses pi , while underpopulating the regions of low-four- 
momentum transfer squared ti . .From Eq. (11) it is clear that this trend is enhanced 
with increasing multiplicity. The Monte Carlo event generator presented here 
overcomes these difficulties by concentrating the invariant masses pi at low values 
and then generating each of the four-momentum transfers squared ti so that they 
more closely resemble the distributions predicted by the multiperipheral model. 

The invariant masses are generated first, in order, starting with the two-particle 
system p2 . That is, 

I32 = (E - &I P2 + Jf32 3 (12) 

where E is the center-of-mass energy of the reaction, S, the sum of the final-state 
particles’ rest masses, and S, the sum of the rest masses of the particles that compose 
p2 . The dimensionless quantity p2 is a random variable generated in the interval 
0 to 1. The other invariant masses are obtained by 

pi = (E - S, -I- Si - mi - pi-d pi -I- pivl + mi . (13) 

Here mi is the mass of the ith particle and Si = & mj . Equations (12) and (13) 
ensure energy conservation. The frequency distributions of the generated random 
variables hi(pi) are arbitrary, but the choice determines the frequency distribution 
of the generated invariant masses and thus effects the efficiency of the integration 
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of a particular model r(4). The’methods employed by previous Monte Carlo 
generators [2-61 for generating the invariant masses pi are equivalent to 

h&i) = (1 - Q-i-1, 041 

As illustrated above for the zero-rest-mass case, this leads to an overpopulation of 
large values for these invariant masses when integrating the multiperipheral model. 
In order to increase the population of low invariant mass events this generator 

employs the frequency 

k(pd = exp(--bd. (15) 

The n - 2 parameters bi are chosen so that the resulting invariant mass distri- 
butions resemble as closely as possible those predicted by r(4), the model to 
integrated. For the multiperipheral model, Eq. (2) it can be shown [l] that 

(l-h> - E(i-l/n-l). 
U6> 

Neglecting the rest masses of the final-state particles and assummg most of the 
invariant masses have small values, one has approximately pLi = Epi , so that 

Mpd = exp(--b+43, 
for which 

+d = Elbi . 

Comparing Eqs. (16) and (18) one finds 

bi - -WA> - El-(i-l/n-l) wE(n-i/n-l,s 

Using this result as a hint, we parametrize 

The values of the two parameters, b, and ED , are chosen so that the resulting 
IZ - 2 invariant masses are generated as closely as possible to those predicted by 
the multiperipheral model. This can be conveniently accomplished by generating 
a sample of N events and choosing those values of Ea and b, that minimize the 
fractional statistical uncertainty in the Monte Carlo integration of r(4). From 

Eq. (3) it is seen that this is equivalent to maximizing the efficiency E for the 
integration. 

This maximization can be carried out by performing a search in the two- 
dimensional space for the maximum of the function 
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Here r(+J is the value of the matrix element squared predicted by the model 
for the ith event and lif(&) is the weight assigned by the event generator 
the ith event. The search for the optimum values of E. and b, can be performed 
by using one of the many computer codes that otpimize a function of several 
variables. Using MINF68 [8], acceptable values for the parameters are usually 
obtained after four or five iterations, Since only relative values of Q,, , E,) 
are important in the search, the random number generator employed by the 
event generator should be initilized to the same stating point for each evaluation 
of E. 

The optimum number of Monte Carlo events N used for the evaluation of E in 
the search depends upon several factors. The larger N, the more accurately the 
solution to the search will represent the best efficiency, and the solution values of 
the parameters will be the best ones for the Monte Carlo integration. However, 
the computational time required for the search increases linearly with increasing N. 
Thus, the time required for the search must be balanced with the computational 
time required for the ultimate generation of events for the integration of r(4). 
This latter time increases linearly with decreasing efficiency. Empirically, it has 
been found that the choosing of N such that NE 2 100 gives an adequate estimation 
of the best values for the parameters. 

After generating the invariant masses, the four-momentum transfers squared ti 
are generated with the frequency 

(22) 

The (n - l)& are chosen so as to populate the ti as closely as possible to those 
predicted by the multiperipheral model Eq. (2). The Monte Carlo event generators 
described in Refs. [3, 51 used di = ai for all values of i. For the zero-rest-mass 
case Eqs. (9) and (10) indicate that 

di = a&l - (ai-JaJ(l - 2/i)], dI = a, (23) 

wauld be a better choice. In general Eq. (9) suggests that 

4 = 4[1 - (ai-l/ai>((~i-l/lui)2>1, dI = a, (24) 

is a good prescription, where the average <(,ui-,/pi)“> is evaluated for the frequency 
distribution of the generated invariant masses. For the invariant mass distributions 
implied by Eqs. (12), (13), (15), and (20) this average value is difficult to evaluate. 
Therefore we simply take 

di = dI + d’(i - 1). (25) 

The best values of dI and d’ can be -obtained by searching for the maximum of 
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the efficiency, Eq. (21), in the space of these parameters. Since the best valttes of 
these parameters depend upon the generation frequencies of the invariant masses, 
they will depend upon the values used for b, and E, , Eq. (20). Therefore, the 
optimization for b, and E. should be performed before the optimization for 
dl and d’. Another procedure is to search for the maximum of the efficiency in the 
space of all four parameters simultaneously. 

To the extent that the approximations leading to Eqs. (20) and (25) are satisfied, 
the four parameters b, , E,, , dl , and d’ should be independent of energy and 
multiplicity. Table II gives the solution values of these parameters for the same 
conditions described for Table I. Inspection of Table II shows that each of t 
parameters has a slow dependence on energy and a bit more rapid dependence 
on multiplicity. 

TABLE II 

Values of the parameters bO, & , 4 , and d’ (see text) that yielded the efficiencies of Table Pb. 

n 
P --f 50 GeV/c 

bo 2.4 

4 EO 1.1 

d, 3.4 

d’ 0.62 

bo 3.2 

8 ELI 0.58 

4 4.1 

d’ 0.12 

bo 6.0 

16 EO 0.34 

4 8.6 

d’ 0.63 

200 GeV/c 1000 GeVic 

2.2 

1.3 

3.7 

0.39 

2.9 2.4 

0.67 0.82 

4.8 4.7 

0.44 0.30 

6.0 

0.48 

8.1 

0.29 

1.8 

1.8 

3.1 

0.34 

3.7 

0.41 

7.9 

0.25 

The procedures and parametrization discussed above are not limited to a 
specific multiperipheral model [for example, Eq. (2)]. Any model with similar 
characteristics can be integrated with comparable efficiency. The best values of 
the parameters b, , E, , dl , and d’ can be found for any ~(4) by inserting it into 
Eq. (21)andsolving for the maximum of the efficiency in the space of the parameters. 
Also, one can alter the parametrization itself for sufficiently different models. 
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